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SUMMARY & CONCLUSIONS 
 

The range-dependent nature of the surface clutter power 
spectrum observed in monostatic or bistatic airborne radar 
systems results in a mismatch of the clutter covariance matrix 
(computed from a secondary set of range-cell data) relative to 
that of a possible target test cell, with attendant degradation of 
space-time adaptive processing (STAP) performance. In this 
paper, we develop a new method for predicting the test cell 
clutter covariance matrix by estimating the configuration 
system parameters that directly influence the clutter power 
spectrum. The method uses a multiple complex sinusoid 
model whose parameters are related to the configuration 
system parameters, which are then optimized to match the 
radar return pulse-train data in a least-squares sense. The 
estimated configuration parameters are then used to predict the 
clutter covariance matrix in the test cell, which is then used 
with traditional STAP methods. Computer simulation results 
are presented that demonstrate the significantly improved 
STAP performance obtained by the method developed here 
compared to the conventional method of using the sample 
covariance matrix estimated from secondary data. 
 

1.  INTRODUCTION 
 

The detection of slow-moving (low-Doppler) ground 
targets from monostatic or bistatic airborne radars is difficult 
due to the high power level of surface clutter and the 
significant clutter Doppler spread.  This spread tends to mask 
the return of a low-Doppler target. STAP techniques, using 
return pulse-train data obtained in the elements of an array 
antenna, exploit the angle-Doppler separation between target 
and ground clutter to provide enhanced detection of these 
types of targets.  The application of various STAP methods 
requires the computation of a target-free clutter covariance 
matrix for each test range cell.  This is typically done by 
straight averaging of the outer products of neighboring 
(secondary) range cell data snapshots.  However, for bistatic 
radar systems and also for monostatic systems other than the 
specialized case of an ideal side-looking array, the clutter 
angle-Doppler characteristics vary with range. This causes the 
sample covariance matrix computed from secondary data set 
to be mismatched relative to the test cell.  This results in a 

highly sub-optimum weight vector and degraded STAP 
performance in canceling clutter. 

Various methods for compensating for the range 
variation of the clutter angle-Doppler ridges have been 
proposed in the literature including Doppler warping [1], 
higher order Doppler warping (HODW) [2], derivative based 
updating (DBU) [3], angle-Doppler compensation (ADC) [4], 
adaptive angle-Doppler compensation (A2DC) [5], and 
Registration-based approaches [6]. 

These methods attempt to align the peaks of the Doppler 
spectrum or the two-dimensional angle-Doppler spectrum of 
the secondary data with the test cell resulting in an 
approximate registration of the secondary clutter ridges with 
the test cell clutter ridge in angle and Doppler.  However, 
these methods only accomplish partial compensation and, 
more importantly, implicitly assume that the test cell data is 
free of the desired target signal which contradicts the very 
purpose of doing the compensation. 

The present work, on the other hand, attempts to estimate 
the underlying platform motion, antenna orientation and 
transmitter-receiver geometry parameters, i.e., the 
configuration system parameters, from the secondary data 
snapshots and use these estimates to predict the test cell 
covariance matrix. Examples of these configuration 
parameters include the transmitter and receiver velocity 
vectors (including the effects of unknown aircraft pitch and 
crab angles) and transmitter to receiver relative position 
vector.   Nominal values of these parameters are available 
from GPS or inertial navigation system data and are used as 
initial estimates for the estimation technique developed here.  
The work reported here complements research previously 
reported in reference [6]. However, the estimation 
methodology proposed here is quite different. Furthermore, 
the test cell covariance matrix is explicitly estimated from the 
configuration system parameter estimates and used to improve 
STAP performance relative to the uncompensated case. The 
general methodology for estimating the configuration system 
parameters is based on using the full space-time data, i.e., 
element level-pulse train data, which will be presented at a 
future date. For present purposes, however, it is assumed that 
the receive array has already been beam formed and that just 
the pulse-train data at the beam level is available. 
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2.  BISTATIC CLUTTER MODEL 
 

A brief description of the bistatic clutter model used in the 
simulation is given here.  A rectangular array is used to 
transmit a coherent train consisting of N pulses in a given 
direction.  The receive array is a uniformly spaced line array 
of M elements.  Assuming a local flat earth, a constant bistatic 
range contour is an ellipse as shown in Figure 1.  In the figure, 
the center reference point (CRP) denotes the point at which 
the transmit beam is directed.  A bistatic range ring is the 
annulus between two ellipses whose width is inversely 
proportional to the transmit waveform bandwidth.  The clutter 
range ring is divided into a large number, cN , of small patches.  
The clutter return vector from a given bistatic range ring is the 
superposition of independent return vectors from these small 
patches, i.e., the clutter plus noise vector is given by 

( )
1

CN

C ,n f n
n

a f
=

= +∑x d n                                (1)                  

where andc ,n f na ( f )d are the complex clutter amplitude  and 
the Doppler steering vector for the nth clutter patch, 
respectively, nf  is the bistatic Doppler shift of the nth patch  
and n is the noise vector. 
 

 
Figure 1. Bistatic range contour and system geometry 

 
This clutter model is used to simulate the clutter temporal data 
in the test and secondary range cells and also the associated 
true and finite-data covariance matrices which are needed to 
evaluate performance.  

The complex clutter amplitudes are statistically 
independent complex Gaussian random variables whose mean 

power for the nth patch is given by 
2

c ,n nE a P=  where 

       
( )
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TP is the transmit power, T ,n R ,nG ,G are the transmit and  
receive beam pattern power gains for the nth patch, 
respectively, λ is the wavelength, B,nσ  is the clutter patch 
bistatic reflectivity and c ,n T ,n R,nA ,R and R are the area of the 

patch, the distance from the transmitter to the patch and the 
distance from the receiver to the patch, respectively. One 
model for the bistatic reflectivity is [7], 

    B,n T ,n R,nσ γ sin(θ )sin(θ )=   ,                      (3) 

where γ is the monostatic reflectivity, assumed constant for 
homogeneous terrain, and T ,n R ,nθ and θ are the transmitter and 
receiver grazing angles, respectively.  The terms which are 
constant with respect to the position of the patch can be 

absorbed into a clutter power constant 
( )

2

34
T

P
P λ γ

K
π

= ,  which is 

regarded as unknown and is one of the configuration system 
parameters to be estimated. 
 
3.  LEAST-SQUARES ESTIMATION OF CONFIGURATION 

SYSTEM PARAMETERS 
  

If the bistatic system parameters were perfectly known, 
the clutter space-time covariance matrix for any range cell 
could be predicted and the optimal weight vector for that 
range cell determined.  However, in reality, the system and 
relative motion parameters are not known precisely.  We 
propose to estimate these parameters using the return pulse-
train data of the secondary range cells, and then predict the 
test cell covariance matrix.  The parameters to be estimated 
are the receiver speed, heading (assuming level flight), the 
receiver position vector relative to the transmitter, the 
transmitter speed, the aircraft yaw and pitch angles, and clutter 
power level constant.  The method developed here consists of 
modeling the clutter return pulse-train data for a given 
secondary range cell as being composed of a discrete number 
of  complex sinusoids with unknown complex amplitudes and 
frequencies.  These parameters of the multiple sinusoids are 
functionally related to the configuration system parameters 
which are then optimized to match the return pulse train data 
from all the secondary range cells in a least–squares sense. 
The complex amplitudes, which enter linearly in the model, 
are estimated by a closed-form linear least-squares estimation 
formula.  Let α  denote the vector of unknown parameters.  A 
model of M scatterers within the mainlobe is used whose 
Doppler steering vectors f ( )d α  are dependent on the 

parameter vector α.  Typically, M = 2, 3 or 5.  This then 
becomes a multiple complex sinusoid model.  Let x denote the 
N-dimensional return pulse-train data vector for a particular 
range cell.  Then 

( )= +x D a nα                                      (4) 

where the M columns of the N by M matrix ( )D α  are the 
Doppler steering vectors corresponding to the M scatterers in 
the model and are functions of α.  a is the unknown complex 
amplitude vector. Minimizing the Euclidean norm 

                         2J( , ) ( )= −α a x D α a ,                            (5) 
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with respect to a and α can be accomplished by a two-step 
process.  First, minimizing with respect to the amplitude 
vector a yields  

( ) ( ) ( )1H Hˆ −
 =  a D D D xα α α , 

where the superscript H  denotes complex conjugate transpose. 

Substitution of â  for a in (5) yields a function to be 
minimized solely with respect to α : 

( ) 2

1J ( ) = −α x P α x                             (6) 

where 

( ) ( ) ( ) ( ) ( )1H H−
  P α = D α D α D α D α               () 

is the orthogonal projection operator that projects the data 
vector x onto the subspace spanned by the columns of ( )D α  
which are dependent on the unknown parameter vector α. 
Note that H =P P and P is idempotent i.e.; 2 =P P  and these 
properties have been used to obtain (6). Extension of (6) to 
estimating α from multiple secondary range cells data is 
relatively straightforward and yields the criterion function to 
be minimized as 

                    ( ) ( ) 2

1
1

K

k k
k

J (α )
=

= −∑α x P α x                       (7) 

where the subscript k indexes range cells. 

 The minimization of (7) is a non-linear optimization 
problem.  In the present work, the minimization of (7) has 
been accomplished using MATLAB’s “fminsearch” function 
for optimization, which implements the Nelder-Mead simplex 
search algorithm. An alternative method, called the iterative 
re-linearization method based on a Taylor series expansion of 
the projection operator has also been developed and will be 
presented in the future.  Since nominal values of the unknown 
parameters were available in the form of GPS or inertial 
navigation system data together with reasonable upper and 
lower bounds on these estimates, the MATLAB fminsearch 
method was augmented with a penalty function that 
effectively constrained the resulting solutions to lie within 
these bounds.  

 The power constant PK  is estimated as follows: The 

power in a given range cell data vector x, 2E x , where E 
denotes the expectation operator,  is related to PK  via 
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          (8) 

Since all the terms inside the summation sign in (8) are 
assumed known from the postulated clutter model, PK  can be 

solved for quite simply from (8) if 2E x were known.  Since   
2E x is not ,in general, known, we obtain an estimate of PK  

by using 2x in place of 2E x . For multiple secondary range 
cells, (8) is applied to each range cell data kx  and the 
resulting estimates of PK  are then averaged. 

 The test cell clutter covariance matrix is then estimated 
by using these estimated parameters in the model for clutter 
simulation described in Section 2.  Note that the configuration 
system parameters have been estimated using the secondary 
range-cell data and excluding the test cell data, thus avoiding 
target signal cancellation.  It is also to be noted  that these 
parameters can be estimated using just one secondary range-
cell data and a Toeplitz covariance matrix estimate of the test 
cell constructed (as opposed to the sample covariance matrix 
which requires the number of secondary  range-cell data to be 
at least equal to N for full rank condition). 

 
4.  COMPUTER SIMULATION RESULTS 

 
A MATLAB simulation has been developed to evaluate 

the performance of the proposed method.  The objective is to 
determine and compare the signal-to-interference plus noise 
ratio    (SINR)    metric as a function of Doppler for the case 
where             

1) the clutter covariance matrix was computed from the 
auxiliary data and applied to the test cell 
(uncompensated) 

2) the configuration system parameters were estimated 
and used to generate the test cell covariance matrix 
and associated weight vector.  For reference 
comparison, the performance of the optimal 
clairvoyant weight vector using the true test cell 
clutter covariance matrix was also evaluated.  

For a given weight vector w computed using some estimate of 
the clutter covariance matrix R̂  via 1

f
ˆ −=w R d , the SINR is 

given by 
22 1

1 1

HH
f ff

H H
f f

ˆ
SINR ˆ ˆ

−

− −
= =

d R dw d

w Rw d R RR d
                        (9)                    

 
The parameters for the simulation were: 

Frequency = 1.24GHz 
Number of pulses = 32 
PRF = 2000 Hz 
Bandwidth = 4 MHz 
Transmit array: 36 by 18 half wavelength spacing elements 
Receive array: 16 elements uniformly spaced 
Transmitter speed = 100 m/sec 
Receiver speed =150 m/sec 
Transmitter coordinates (0, -50, 4) km 
Receiver coordinates (0, 50, 4) km. 

We first show the results for only two unknown 
parameters, namely receiver speed and heading with assumed 
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level flight motion, which required to be estimated. The 
bistatic range of the test cell was 141.65 km and one 
secondary range cell at a bistatic range of 145.2 km was used 
to estimate the parameters.  The peak clutter-to-noise ratio 
(CNR) in the test cell was 60dB and 58.4dB in the secondary 
cell.   It should be noted that the peak of the Doppler spectrum 
of the range cell is dependent on the dot product of the 
receiver velocity vector with the unit line of sight vector to the 
appropriate clutter mainlobe clutter patch and not individually 
on the speed and heading.  This is approximately true in the 
vicinity of the entire mainlobe.  Consequently, there is an 
ambiguity in the estimation of the receiver speed and heading 
separately. However, as will be shown below, this does not 
necessarily mean that the predicted test cell covariance matrix 
based on these parameters is significantly degraded from the 
true covariance matrix.   Figures 2 and 3 show the least-
squares error surface in the form of a 3-D plot and contour 
plot, respectively.  It can be seen from these figures that the 
residual error surface is essentially flat in a certain direction 
which demonstrates this inherent ambiguity.    The squared-
error residual given by (6) was minimized using the 
MATLAB fminsearch function.  The fminsearch algorithm 
was modified to include a severe penalty function if the 
resulting estimate during the function calls fell outside  certain 
limits set based on a priori  knowledge (such as GPS or 
inertial navigation data). 

 Figure 2.   3-D Least-Squares residual plot as a function of 
receiver speed and heading 

 
This succeeded in constraining the solution to lie within 

these limits. As can be seen from Figure 3, the final estimate 
is not near the truth (150 m/sec speed and 0° heading), 
however its squared error residual is the lowest and is nearly 
on the constant error residual contour that passes through the 
true target point in speed and heading.  This essentially means 
that the resulting estimated Doppler spectrum of the test cell 
and its associated covariance matrix is close to what would 
have been had the true parameters been used. 

 

Figure 3.  Contour Plot of the Least-Squares Residual 
 

This is demonstrated in Figure 4 which shows the output 
SINR for the optimal clairvoyant case, the uncompensated 
case, and using the estimated parameters case.  As can be 
seen, the SINR for the optimal clairvoyant case (using the true 
parameters) and the estimated parameters case are virtually 
identical and substantially better than the uncompensated case. 

 
Figure 4. Output SINR, 2 estimated parameters 

  
The simulation results using 7 unknown parameters, namely 
receiver speed and heading, 3-dimensional receiver position 
vector relative to transmitter, transmitter speed, and clutter 
return power constant pK , are presented next.  These 
parameters were optimized so as to minimize the squared-
error residual given by (6).  Figures 5 and 6 show the full-
view and magnified view SINR for peak CNR of 30dB and 
one secondary range cell data used. 
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Figure 5.  Output SINR, 7 estimated parameters, case 1 

 
As can be seen, the SINR using the estimated parameters is 
very close to that using the true parameters and both are 
significantly better than the uncompensated case, particularly 
in the low target Doppler region in the vicinity of the notch in 
the SINR curves. The SINR of the uncompensated case tends 
to be displaced with respect to the optimal clairvoyant case, 
reflecting the fact that the secondary range cell Doppler 
spectrum is displaced and mismatched relative to the test cell. 

 
         Figure 6.  Magnified view of Figure 5, CNR = 30dB  
                                                           

Figures 7 and 8 show the corresponding results for peak 
CNR of 50dB. 

 
Figure 7.  SINR’s using 7 estimated parameters, CNR = 50dB 

 
CONCLUSIONS 

 
 In this paper, we presented a new method for estimating 
the configuration system parameters using the return pulse 
train   data from a secondary set of range cells.  These 
estimated parameters were then used to predict the test cell 
clutter covariance matrix.  Computer simulation results have 
shown that the resultant performance of adaptive Doppler 
filtering methods using these estimated parameters is 
substantially better than the uncompensated case and can be 
very close to the optimal clairvoyant case for moderately high 
clutter to noise ratios.  More comprehensive simulation 
results, including parameter estimation using multiple range 
cells and extension to using full space-time data (array 
element-pulse train data) will shortly be available in an 
upcoming technical report. 

 
Figure8.  Magnified view of Figure 7, CNR = 50dB 

 
As can be seen, there is a further performance improvement of 
the estimated parameters case so that its SINR is almost 
identical to that of the case using the true parameters. 

 

 

0-7803-8882-8/05/$20.00 (C) 2005 IEEE



REFERENCES 

[1]. G. Borsari, “Mitigating effects on STAP processing 
caused by an inclined array”, Proc. IEEE 1998 National 
Radar Conf., Dallas, TX, May 1998 

[2]. F. Pearson and G. Borsari, “Simulation and Analysis of 
Adaptive Interference Suppression for Bistatic 
Surveillance Radars”, Proc. 2001 Adaptive Sensor Array 
Processing Workshop, Lincoln Lab, MA, March 2001 

[3]. Michael Zatman, “Performance Analysis of the 
Derivative Based Updating Method”,  Proc. 2001 
Adaptive Sensor Array Processing Workshop, Lincoln 
Lab, MA, March 2001 

[4]. B. Himed, Y. Zhang and A. Hajjari, “STAP with angle-
Doppler compensation for bistatic airborne radar”, Proc. 
2002 IEEE Radar Conf., Long Beach, CA, April 2002 

[5]. W.L. Melvin, B Himed and M.E. Davis, “Doubly 
adaptive bistatic clutter filtering,” Proc. 2003 IEEE Radar 
Conf., Huntsville, AL, 5-8 May 2003, pp 171-178 

[6]. F. D. Lapierre and J. G. Verly, “Registration-based 
solutions to the range-dependence problem in STAP 
radars”, Proc. 2003 Adaptive Sensor Array Processing 
Workshop, Lincoln Lab., MA, March 2003 

[7]. N. J. Willis, Bistatic Radar, Technology Service Corp., 
1995 

 
BIOGRAPGIES 

 
Amin G. Jaffer is a Sr. Principal Engineer at Raytheon Space 
and Airborne Systems, El Segundo, California. He obtained 
the MSEE degree from the University of Wisconsin, Madison 
and the PhD (EE) degree from Southern Methodist University, 
Dallas.  He has over 34 years experience in the development 
and evaluation of techniques for detection, classification and 
tracking in radar and sonar systems including adaptive 
beamforming and space-time adaptive processing (STAP).  
Applications included TPQ-36 and 37 radars, ADCAP smart 
torpedo sonar system and SURTASS surveillance system. 

He has published 37 papers in adaptive processing, estimation 
theory and target tracking. He is also the holder of a U.S. 
patent on clutter tuning for bistatic radar systems. Dr. Jaffer 
has taught courses in electrical engineering at California State 
University, and courses on STAP at Raytheon Co.  He was the 
recipient of Raytheon individual and team achievement 
awards in 1996, 1998, 2002, 2003 and 2004 for contributions 
to development of advanced signal processing methods for 
applications to radar and sonar systems. 
 
Braham Himed is a senior research engineer with the United 
States air force research Laboratory, sensors directorate.  He 
received his B.S. degree from Ecole Nationale Polytechnique 
of Algiers, Algeria in 1984, and his M.S. and Ph.D. degrees 
from Syracuse University, Syracuse, NY, in 1987 and 1990, 
respectively, all in Electrical Engineering. His research 
interests include detection, estimation, multichannel adaptive 
signal processing, time series analyses, array processing, 
space-time adaptive processing, hot clutter mitigation, and 
ground penetrating radar technology. Dr. Himed is a senior 
member of the IEEE and a member of the radar systems panel. 
 
Phil Ho received the Bachelor of Science in Electrical 
Engineering from University of Colorado in 1983, Master of 
Science in EE from California Polytechnic University in 1991 
and Engineer degree in EE from University of Southern 
California in 1999.  Currently Phil is a Principal Engineer at 
Raytheon  Space and Airborne System division in El Segundo, 
California.   He is currently working in the area of  space-time 
adaptive processing (STAP) and signal detection for Bistatic 
radar system.  From 1984 to 2002, Phil had  worked on 
tracker, digital signal processing for sonar, image processing 
for electrical-optical systems, control system design for 
infrared seeker.  In 1998 Phil received individual award from 
Hughes for his work on the Closest Point of Approach 
Estimator.  
 

0-7803-8882-8/05/$20.00 (C) 2005 IEEE


	Select a link below
	Return to Main Menu
	Return to Previous View

	Select a link below
	Return to Main Menu
	Return to Previous View




